Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Aug:70:73-81.
doi: 10.1242/jcs.70.1.73.

Reduction in the mitochondrial membrane potential of Toxoplasma gondii after invasion of host cells

Reduction in the mitochondrial membrane potential of Toxoplasma gondii after invasion of host cells

K Tanabe et al. J Cell Sci. 1984 Aug.

Abstract

The membrane potential of Toxoplasma gondii, an obligatory intracellular protozoan parasite, was monitored with the cationic permeant fluorescent dye rhodamine 123 (R123). Fluorescence microscopy revealed R123 to be partitioned predominantly in a restricted part of the parasite, which consisted of twisted or branched tubules, or of granular bodies. These structures were frequently connected to each other. The dye retention by these structures was markedly reduced by treating R123-labelled parasites with the proton ionophore, carbonylcyanide m-chlorophenylhydrazone, the potassium ionophore, valinomycin and the inhibitor of electron transport, antimycin A. Thus, these structures are regarded as the parasite mitochondria. Another cationic fluorescent dye, rhodamine 6G, stained the parasite mitochondria, whereas a negatively charged fluorescent dye, fluorescein, and the neutral compounds, rhodamine 110 and rhodamine B, did not. This fact indicates that R123 monitored the parasite mitochondrial membrane potential. T. gondii-infected 3T3 cells were also stained with R123. In contrast to the mitochondria of extracellular parasites, those of intracellular parasites failed to take up the dye. The absence of fluorescence in intracellular parasites persisted until the infected host cells ruptured and liberated daughter parasites 1 day after infection. Parasites, liberated from the host cells, either spontaneously or artificially by passing the infected cells through a 27G needle, regained the ability to take up the dye. After direct microinjection of R123 into the vacuole in which the parasite grows and multiples, the dye appeared in the host-cell mitochondria but not in the parasite's mitochondria. Thus, we conclude that the mitochondrial membrane potential of T. gondii was reduced after invasion of host cells by the parasite.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources