Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Oct;1(5):309-25.
doi: 10.1016/0168-0102(84)90036-1.

Axon collaterals of anterior semicircular canal-activated vestibular neurons and their coactivation of extraocular and neck motoneurons in the cat

Axon collaterals of anterior semicircular canal-activated vestibular neurons and their coactivation of extraocular and neck motoneurons in the cat

Y Uchino et al. Neurosci Res. 1984 Oct.

Abstract

We studied the ascending and descending axonal trajectories of excitatory vestibular neurons related to the anterior semicircular canal, by means of local stimulation and spike-triggered signal averaging techniques in anesthetized cats. More than 200 vestibular neurons related to the ampullary nerve of the anterior semicircular canal (ACN) were identified as vestibulo-ocular neurons by antidromic stimulation of the contralateral inferior oblique (IO) muscle motoneuron pool. In the descending, medial and ventral lateral nuclei, about 60% of these vestibulo-ocular neurons were also activated antidromically by upper cervical spinal cord stimulation (vestibulo-ocular-collic (cervical) = VOC). These VOC neurons produced unitary EPSPs in the majority of neck extensor motoneurons located at the C1 segment. None of the VOC neurons had axons descending as far as the thoracic level. Most of these VOC neurons were activated monosynaptically following stimulation of the ACN. The conduction velocity of the descending axons of VOC neurons was approximately 63 m/s, which was significantly faster than that of the ascending axons. The remaining 40% of the vestibulo-ocular neurons were not activated antidromically following spinal cord stimulation at intensities of 1 mA or more (vestibulo-ocular = VO). Most of the VO neurons were activated polysynaptically by ACN stimulation. The superior vestibular nucleus contained VO neurons that were activated mono- and polysynaptically following ACN stimulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources