Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Feb;307(5952):648-9.
doi: 10.1038/307648a0.

Induction of human vascular endothelial stress fibres by fluid shear stress

Induction of human vascular endothelial stress fibres by fluid shear stress

R P Franke et al. Nature. 1984 Feb.

Abstract

Endothelial cells of the arterial vascular system and the heart contain straight actin filament bundles, of which there are few, if any, in the venous endothelium. Since stress fibre-containing endothelial cells within the vascular system tend to be located at sites exposed to particularly high shear stress of blood flow, we have investigated, in an experimental rheological system (Fig. 1), the response of the endothelial actin filament skeleton to controlled levels of fluid shear stress. Here we report that endothelial stress fibres can be induced by a 3-h exposure of confluent monolayer cultures of human vascular endothelium to a fluid shear stress of 2 dynes cm-2, approximately the stress occurring in human arteries in vivo. Fourfold lower levels of shear stress that normally occur only in veins, had no significant effect on the endothelial actin filament system. The formation of endothelial stress fibres in response to critical levels of fluid shear stress is probably a functionally important mechanism that protects the endothelium from hydrodynamic injury and detachment.

PubMed Disclaimer

Publication types

LinkOut - more resources