Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan;98(1):66-78.
doi: 10.1083/jcb.98.1.66.

Studies on the spectrin-like protein from the intestinal brush border, TW 260/240, and characterization of its interaction with the cytoskeleton and actin

Studies on the spectrin-like protein from the intestinal brush border, TW 260/240, and characterization of its interaction with the cytoskeleton and actin

M Pearl et al. J Cell Biol. 1984 Jan.

Abstract

The terminal web of the intestinal brush border contains a spectrin-like protein, TW 260/240 (Glenney, J. R., Jr., P. Glenney, M. Osborne, and K. Weber, 1982, Cell, 28:843-854.) that interconnects the "rootlet" ends of microvillar filament bundles in the terminal web (Hirokawa, N., R. E. Cheng, and M. Willard, 1983, Cell, 32:953-965; Glenney J. R., P. Glenney, and K. Weber, 1983, J. Cell Biol., 96:1491-1496). We have investigated further the structural properties of TW 260/240 and the interaction of this protein with actin. Salt extraction of TW 260/240 from isolated brush borders results in a loss of terminal web cross-linkers primarily from the apical zone directly beneath the plasma membrane. Morphological studies on purified TW 260/240 using the rotary shadowing technique confirm earlier results that this protein is spectrin-like and is in the tetrameric state in buffers of low ionic strength. However, examination of TW 260/240 tetramers by negative staining revealed a molecule much straighter and more uniform in diameter than rotary-shadowed molecules. At salt concentrations at (150 mM KCl) and above (300 mM KCl) the physiological range, we observed a partial dissociation of tetramers into dimers that occurred at both 0 degree and 37 degrees C. We also observed (in the presence of 75 mM KCl) a concentration-dependent self-association of TW 260/240 into sedimentable aggregates. We have studied the interaction of TW 260/240 with actin using techniques of co-sedimentation, viscometry, and both light and electron microscopy. We observed that TW 260/240 can bind and cross-link actin filaments and that this interaction is salt- and pH-dependent. Under optimum conditions (25-75 mM KCl, at pH 7.0) TW 260/240 cross-linked F-actin into long, large-diameter bundles. The filaments within these bundles were tightly packed but loosely ordered. At higher pH (7.5) such bundles were not observed, although binding and cross-linking were detectable by co-sedimentation and viscometry. At higher salt (greater than 150 mM KCl), the binding of TW 260/240 to actin was inhibited. The presence of skeletal muscle tropomyosin had no significant effect on the salt-dependent binding of TW 260/240 to F-actin.

PubMed Disclaimer

References

    1. Cell. 1980 Jul;20(3):839-47 - PubMed
    1. J Biol Chem. 1980 Nov 25;255(22):10551-4 - PubMed
    1. J Cell Biol. 1980 Dec;87(3 Pt 1):809-22 - PubMed
    1. J Cell Biol. 1981 Feb;88(2):346-51 - PubMed
    1. J Cell Biol. 1981 Feb;88(2):463-8 - PubMed

Publication types