The motor of leukocytes
- PMID: 6540718
The motor of leukocytes
Abstract
The movements of leukocytes involve extension, flow, and contraction of a margin of organelle-excluding cytoplasm. Actin is the principal structural component of this region. This paper reviews evidence that the expansion of cortical cytoplasm can result from the growth of actin polymers into an orthogonal network in which actin fibers branch perpendicularly under the influence of actin-binding protein. Flow occurs when actin filaments are disassembled and severed. The assembly and fragmentation of actin are regulated by actin-modulating proteins such as profilin, which sequesters actin monomers, acumentin, which binds to the slow-growing end of actin fibers, and gelsolin, a calcium-regulated protein that binds to the fast-growing end of actin polymers and severs actin filaments. Contraction of the actin network is caused by myosin, the assembly and activity of which are regulated by its state of phosphorylation, which is in turn controlled by phosphorylating and dephosphorylating enzymes and by calmodulin and calcium. Present information leads to the prediction that intracellular calcium gradients guide cytoplasmic movement and that the direction of actin assembly and therefore of cytoplasmic extension is toward regions of low cytoplasmic free calcium.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Research Materials