Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Aug 1;232(2):520-5.
doi: 10.1016/0003-9861(84)90569-1.

Nitro analogs of substrates for argininosuccinate synthetase and argininosuccinate lyase

Nitro analogs of substrates for argininosuccinate synthetase and argininosuccinate lyase

F M Raushel. Arch Biochem Biophys. .

Abstract

The nitro analogs of aspartate and argininosuccinate were synthesized and tested as substrates and inhibitors of argininosuccinate synthetase and argininosuccinate lyase, respectively. The Vmax for 3-nitro-2-aminopropionic acid was found to be 60% of the maximal rate of aspartate utilization in the reaction catalyzed by argininosuccinate synthetase. Only the nitronate form of this substrate, in which the C-3 hydrogen is ionized, was substrate active, indicating a requirement for a negatively charged group at the beta carbon. The V/K of the nitro analog of aspartate was 85% of the value of aspartate after correcting for the percentage of the active nitronate species. The nitro analog of argininosuccinate, N3-(L-1-carboxy-2-nitroethyl)-L-arginine, was a strong competitive inhibitor of argininosuccinate lyase but was not a substrate. The pH dependence of the observed pKi was consistent with the ionized carbon acid (pK = 8.2) in the nitronate configuration as the inhibitory material. The pH-independent pKi of 2.7 microM is 20 times smaller than the Km of argininosuccinate at pH 7.5. These results suggest that the tighter binding of the nitro analog relative to the substrate is due to the similarity in structure to a carbanionic intermediate in the reaction pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources