Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1984 Oct;44(10):4420-31.

Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells

  • PMID: 6547875
Comparative Study

Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells

W R Wilson et al. Cancer Res. 1984 Oct.

Abstract

The acridine derivative amsacrine (m-AMSA) is used clinically for the treatment of acute leukemias. The mutagenic activity of this drug has been evaluated at the 6-thioguanine (6-TG) and ouabain resistance loci in cultured Chinese hamster fibroblasts (V79-171b cell line). m-AMSA was found to have weak but significant mutagenic activity at the 6-TG but not at the ouabain resistance locus, after either 1- or 45-hr exposures at concentrations causing up to 90% cell kill. Two other intercalating agents with antitumor activity, Adriamycin and actinomycin D, provided essentially identical results. All three drugs were potent inducers of micronuclei in V79-171b cells, indicating high clastogenic activity. For these intercalating agents, the yield of 6-TG-resistant mutants was approximately 100-fold lower than that for ethyl methanesulfonate after exposures causing equivalent toxicity or equivalent chromosome breakage. The acridine half-mustard ICR-191 resembled ethyl methanesulfonate rather than the other intercalating agents in providing a high yield of 6-TG-resistant mutants relative to its clastogenic activity. The tumor-inactive intercalator 9-aminoacridine demonstrated only low clastogenic activity with a lack of significant mutagenic activity at toxic concentrations. These results suggest that, for m-AMSA, Adriamycin, and actinomycin D, both cell killing and mutagenesis could be direct consequences of chromosome breakage, while 9-aminoacridine may kill cells by a different mechanism. In view of its mutagenic and clastogenic activity at clinically achievable exposures and the similarity of its genotoxic properties to Adriamycin, m-AMSA should be considered a potential carcinogen.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources