Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1983 Aug;53(2):239-61.
doi: 10.1016/0034-5687(83)90070-1.

Mechanism of respiratory effects of methylxanthines

Comparative Study

Mechanism of respiratory effects of methylxanthines

F L Eldridge et al. Respir Physiol. 1983 Aug.

Abstract

Neural respiratory responses to theophylline, aminophylline and ethylenediamine were determined in paralyzed, vagotomized and glomectomized cats whose end-tidal PCO2 and brain temperature were kept constant. Intravenous theophylline and aminophylline similarly stimulated respiration, but ethylenediamine had no effect. The following did not cause the response: muscular and mechanical factors, carotid body and vagal reflexes, spinally mediated mechanisms arising below C7, changes of arterial PCO2 or medullary ECF pH, changes of whole body metabolic rate or release of substances from the adrenal glands. Absence of suprapontine brain did not prevent the response. Pretreatment with a serotonin antagonist did not affect the response but two different dopamine antagonists caused its attenuation. When administered into the third ventricle, theophylline did not stimulate respiration, but both aminophylline and ethylenediamine, due to the latter's ability to mimic the inhibitory effects on neurons of gamma-aminobutyric acid (GABA), caused significant depression of respiration. We conclude that the neural respiratory response to systemically administered theophylline is mediated at the level of the brainstem, and somehow involves the action of the neurochemical dopamine. The failure of cerebroventricularly administered theophylline to stimulate respiration must be related to its inability to reach the appropriate neurons from the cerebrospinal fluid.

PubMed Disclaimer

Publication types

LinkOut - more resources