Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Feb;81(3):894-7.
doi: 10.1073/pnas.81.3.894.

Divergence in cholesterol biosynthetic rates and 3-hydroxy-3-methylglutaryl-CoA reductase activity as a consequence of granulocyte versus monocyte-macrophage differentiation in HL-60 cells

Divergence in cholesterol biosynthetic rates and 3-hydroxy-3-methylglutaryl-CoA reductase activity as a consequence of granulocyte versus monocyte-macrophage differentiation in HL-60 cells

S Yachnin et al. Proc Natl Acad Sci U S A. 1984 Feb.

Abstract

Addition of dimethyl sulfoxide or phorbol myristate acetate (PMA) to HL-60 cell cultures induces granulocytic or monocyte-macrophage differentiation, respectively, in HL-60 cells. Dimethyl sulfoxide-induced granulocyte differentiation in HL-60 cells is associated with a decrease in cellular 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity and with a decrease in the incorporation of [14C]acetate and mevalonate into products of the cholesterol biosynthetic pathway. PMA-induced monocyte-macrophage differentiation in HL-60 cells is associated with a rapid and profound fall in cell proliferation but nonetheless is accompanied by a dose-dependent increase in cellular HMG-CoA reductase activity and [14C]acetate incorporation into the cholesterol biosynthetic pathway. In addition, PMA induces an increase in [14C]mevalonate incorporation into cholesterol and its precursors, suggesting that post-HMG-CoA reductase events in cholesterol biosynthesis are also enhanced. Mature peripheral blood human monocytes possess an active cholesterol biosynthetic pathway, whereas mature human granulocytes are almost entirely lacking in the ability to synthesize post-squalene products. Our results with HL-60 cells indicate that this divergence in sterol-synthesizing ability between two cell lineages, which normally also derive from a common stem cell, can be observed as an early event in the differentiation process.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochemistry. 1976 Feb 10;15(3):521-8 - PubMed
    1. Nature. 1958 Jul 26;182(4630):246-7 - PubMed
    1. J Exp Med. 1977 Dec 1;146(6):1613-26 - PubMed
    1. Nature. 1977 Nov 24;270(5635):347-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1978 May;75(5):2458-62 - PubMed

Publication types

MeSH terms