Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Jul;62(1):6-13.
doi: 10.1172/JCI109114.

Glucagon metabolism in the rat

Glucagon metabolism in the rat

D S Emmanouel et al. J Clin Invest. 1978 Jul.

Abstract

The renal handling of the biologically active glucagon component (the 3,500-mol wt fraction of immunoreactive glucagon [IRG]) and the contribution of the kidney to its overall peripheral metabolism were studied in normal and uremic rats. The metabolic clearance rate of glucagon was 31.8 +/- 1.2 ml/min per kg in normal animals and was diminished by approximately one-third in each of three groups of rats with compromized renal function: 22.3+/-1.6 ml/min per kg in partially (70%) nephrectomized; 22.9+/-3.3 ml/min per kg in bilaterally ureteral ligated; and 23.2+/-1.2 ml/min per kg in bilaterally nephrectomized animals. In normal rats the kidney contributed 30% to the overall metabolic clearance of the hormone and the renal extraction of endogenous and exogenous glucagon was similar, averaging 22.9+/-1.6% and was independent of plasma IRG levels over a wide range of arterial concentrations. The remnant kidney of partially (70%) nephrectomized animals continued to extract substantial amounts (16.6+/-4.2%) of the hormone, but accounted for only 8% of the total peripheral catabolism of IRG. In the two groups of animals with filtering kidneys, renal glucagon uptake was linearly related to its filtered load and could be accounted for by glomerular filtration and tubular reabsorption. However, the kidneys of animals with both ureters ligated (renal extraction of inulin = 3.2+/-1.8%) and hence virtual absence of glomerular filtration, continued to extract 11.5+/-1.9% of the renal arterial glucagon, contributing by 9% to its overall metabolic clearance, indicating that IRG uptake occurs also from the post glomerular capillaries.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Endocrinol Metab. 1963 Dec;23:1285-97 - PubMed
    1. J Biol Chem. 1970 Feb 10;245(3):496-501 - PubMed
    1. Am J Physiol. 1958 Feb;192(2):227-31 - PubMed
    1. Lancet. 1957 Aug 24;273(6991):368-70 - PubMed
    1. J Clin Invest. 1977 Aug;60(2):421-8 - PubMed

Publication types