Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Oct;43(10):4791-8.

Resistance to 9-beta-D-arabinofuranosyladenine in cultured leukemia L 1210 cells

  • PMID: 6603904

Resistance to 9-beta-D-arabinofuranosyladenine in cultured leukemia L 1210 cells

C E Cass et al. Cancer Res. 1983 Oct.

Abstract

A cultured line of L1210 leukemia cells, designated L1210/ara-A, was selected for resistance to 9-beta-D-arabinofuranosyladenine (ara-A) by a series of 72-hr exposures to increasing concentrations of ara-A in the presence of 1 microM deoxycoformycin. Cells of the resistant line were about one-tenth as sensitive as were cells of the parent line to the effects of ara-A on proliferation, viability, and tumorigenicity. Cross-resistance, as determined by comparison of drug effects on rates of proliferation of L1210/C2 and L1210/ara-A cells, was seen with adenosine, deoxyadenosine, methylmercaptopurine ribonucleoside, tubercidin, and cordycepin but not with 1-beta-D-arabinofuranosylcytosine or with 9-beta-D-arabinofuranosyl-2-fluoroadenine. The levels of resistance to methylmercaptopurine ribonucleoside, cordycepin, and tubercidin were considerably greater than that seen with ara-A itself. L1210/C2 and L1210/ara-A cells were compared with respect to the effects of ara-A on cell size distributions, DNA distributions, labeling indices, and apparent rates of DNA synthesis, and the differences seen were consistent with inhibition of DNA synthesis and unbalanced growth as the major mechanism of ara-A cytotoxicity. The decreased sensitivity of DNA synthesis in L1210/ara-A cells treated with ara-A, relative to L1210/C2 cells, was due to reduced intracellular accumulation of ara-A phosphates in the resistant line. Phosphorylation of ara-A, adenosine, and tubercidin, but not deoxyadenosine or deoxycytidine, was greatly reduced in intact L1210/ara-A cells, relative to L1210/C2 cells, and adenosine kinase activity in extracts of L1210/ara-A cells was negligible. Resistance to ara-A, and cross-resistance to tubercidin, methylmercaptopurine ribonucleoside, and cordycepin is attributed to loss of adenosine kinase activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources