Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jul:340:259-86.
doi: 10.1113/jphysiol.1983.sp014762.

Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification

Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification

H Collewijn et al. J Physiol. 1983 Jul.

Abstract

Rotational eye and head movements were recorded with great precision with scleral and cranial search coils in a rotating magnetic field. Compensatory eye movements were recorded in light and darkness during active as well as passive head movements in the frequency range 0.33-1.33 Hz. From the recorded, nominal gaze movements the effective gaze was reconstructed taking into account magnification or reduction factors of corrective spectacles. Effective gain was calculated as the ratio between the velocities of the effective corrective eye movements and the head movements. In the light, effective gain of compensatory eye movements during active head motion was mostly between 0.97 and 1.03. It was never precisely unity and differed systematically between subjects and between the two eyes of each subject. During passive head motion in the light, gain was lower by about 3% than during active motion. During active head movement in the dark, gain was mostly between 0.92 and 1.00; values were about 5% lower than during active motion in the light. During passive head movement in the dark, gain was about 13% lower than during active motion, and the variability of the oculomotor response increased. Adaptation of these base-line conditions was induced by fitting the subjects with magnifying or reducing spectacles for periods of 40 min to 24 h. The largest required change in amplitude of eye movements was 36%. When active head movements were made, the amplitude of compensatory eye movements in the light as well as in the dark adjusted rapidly. Most of the adaptation of the vestibulo-ocular reflex in the dark was completed in about 30 min. This rate is much faster than that found in previous experiments requiring larger adaptive changes. Differential adaptation to unequal demands for the two eyes proved to be very hard or impossible. In a mild conflict situation the system adjusted to an intermediate level, distributing the error symmetrically between the eyes. When the discrepancy was large, the adaptive process of both eyes was controlled by the one eye which provided the most meaningful information. It is concluded that the system generating compensatory eye movements performs best during active rather than passive head movements, and that adaptation to moderate changes in optimal gain are made very rapidly.

PubMed Disclaimer

References

    1. Brain Res. 1972 May 12;40(1):81-4 - PubMed
    1. Brain Res. 1974 Nov 22;80(3):512-6 - PubMed
    1. Vision Res. 1975 Mar;15(3):447-50 - PubMed
    1. Brain Res. 1975 Jul 11;92(2):331-5 - PubMed
    1. Brain Res. 1976 Feb 27;103(3):551-4 - PubMed

Publication types

LinkOut - more resources