Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Nov;131(5):2219-25.

B lymphocyte lineage cells in newborn and very young NZB mice: evidence for regulatory disorders affecting B cell formation

  • PMID: 6605377

B lymphocyte lineage cells in newborn and very young NZB mice: evidence for regulatory disorders affecting B cell formation

H Jyonouchi et al. J Immunol. 1983 Nov.

Abstract

As adults, NZB mice have a severe deficiency of identifiable precursors of B lymphocytes, but this is preceded by a time when B cells and their immediate precursors are present in bone marrow in elevated numbers. Our present studies indicate that the final stages of B cell formation may be proceeding at a greater than normal rate at 4 wk of age. At this time, large numbers of sIg- B cell precursors can be identified in NZB but not in normal CBA/H or DBA/2 marrow that can respond to mitogens in semisolid agar cultures without preculture. Colony formation by these precursors was dependent on the presence of Sephadex G-10-adherent cells in the suspensions. In this respect, 4-wk-old NZB marrow was similar to spleen and liver of normal CBA/H newborn mice. Mixing experiments suggested that hyperactive regulatory cells present in young NZB marrow may promote functional maturation of normal pre-B cells from CBA/H or DBA/2 mice. In addition, potent substances present in the serum of young but not older NZB mice produced the same effect. Factor-mediated enhancement of clonal proliferation by sIg- precursors was not dependent on adherent cells and required more than brief exposure of the cells to young NZB serum. These are all indications that abnormalities of B lineage differentiation in young NZB marrow may be attributable to microenvironmental elements. Congeneic, B cell-deficient NZB.xid mice, however, lacked hyperactive regulatory cell function and serum factors that characterize NZB mice of this age. A study was also made of B cell precursors in newborn spleen and liver of NZB mice, and abnormal shifts of populations of B lineage cells were already present by that time. These observations support previous contentions that humoral immunity is precocious and abnormally regulated in NZB mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types