Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Dec;141(6):1129-36.
doi: 10.2214/ajr.141.6.1129.

Magnetic resonance imaging of the cervical spine: technical and clinical observations

Magnetic resonance imaging of the cervical spine: technical and clinical observations

M T Modic et al. AJR Am J Roentgenol. 1983 Dec.

Abstract

Seventy-two patients were examined to determine the clinical potential for magnetic resonance imaging (MRI) of the spine. MRI using different pulse sequences was compared with plain radiography, high-resolution computed tomography, and myelography. There were 35 normal patients; pathologic conditions studied included canal stenosis, herniated disk, metastatic tumor, neurofibroma, trauma, Chiari malformation, syringomyelia, arteriovenous malformation, and rheumatoid arthritis. MRI provided sharply defined anatomic delineation and tissue characterization. It was diagnostic in syringomyelia and Chiari malformation and was useful in the evaluation of trauma and spinal canal block from any cause. MRI was sensitive to degenerative disk disease and infection. The spin-echo technique, with three pulse sequence variations, seems very promising. A short echo time (TE) produces the best signal-to-noise ratio and spatial resolution. Lengthening the TE enhances differentiation of various tissues by their signal intensity, while the combined increase of TE and recovery time (TR) produces selective enhancement of the cerebrospinal fluid signal intensity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources