Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Sep;305(5932):317-9.
doi: 10.1038/305317a0.

Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets

Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets

T J Rink et al. Nature. 1983 Sep.

Abstract

An increase in cytoplasmic free calcium, [Ca2+]i, is thought to be the trigger for secretory exocytosis in many cells. In blood platelets, large rises in [Ca2+]i can cause secretion and calcium has been regarded as the final common activator not only for secretion but also for shape-change and aggregation. We have shown that while thrombin and platelet-activating factor (PAF) normally elevate [Ca2+]i, they can also stimulate shape-change and secretion even when the [Ca2+]i rise is suppressed. The present results strongly implicate diacylglycerol, produced by stimulus-dependent breakdown of phosphoinositide, in this calcium-independent activation. Exogenous diacylglycerol activates a protein kinase (C-kinase) in platelets as do PAF, thrombin and collagen. 12-O-tetradecanoyl phorbol-13-acetate (TPA) also activates C-kinase and is a potent stimulus for secretion and aggregation. It is shown here that the exogenous diacylglycerol 1-oleoyl-2-acetyl-glycerol (OAG) and TPA evoke similar secretion and aggregation without elevating [Ca2+]i above the basal level of 0.1 microM. The pattern of secretion resembles that produced by collagen and thrombin when [Ca2+]i remains at basal levels. Modest increases in [Ca2+]i, insufficient to stimulate secretion, markedly accelerate the responses to TPA and OAG.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources