Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jun;11(3):245-72.
doi: 10.1007/BF01061867.

Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats

Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats

N Watari et al. J Pharmacokinet Biopharm. 1983 Jun.

Abstract

Pharmacokinetic studies of the fate of acetaminophen and its major metabolites, acetaminophen sulfate (AS) and acetaminophen glucuronide (AG), were made in rats. The rates of conjugate formation were calculated by deconvolution. The Michaelis-Menten equation gave maximum velocity and Michaelis constant (Km) values of 4.92 mumol/min/kg and 109 microM for AS formation, and 2.76 mumol/min/kg and 915 microM for AG formation. However, AG formation showed approximately first-order behavior in the present dose range because of its large Km value. The disposition of acetaminophen could be described by a two-compartment model with simultaneous first-order and Michaelis-Menten type elimination kinetics for AS formation. Curve fitting of the data based on this model was successfully done for doses of up to 1058 mumol/kg, suggesting that sulfation proceeds without depletion of sulfate in the blood at least up to this dose. The disposition of AS could be described by a two-compartment model and was apparently dose-independent over an 8-fold dose range. Although a slight dose dependence in the elimination of AG was suggested over a 16-fold dose range, for the purpose of the present study, it was assumed that the disposition of AG is approximately linear. The excretion of AS in the bile was negligibly small, whereas a considerable amount of AG was excreted into the bile. The results following intraduodenal injection of AS or AG indicated that AS or AG was hydrolyzed by the microflora and the liberated acetaminophen was reabsorbed, confirming enterohepatic circulation of the conjugates. This was consistent with the urinary metabolite excretion patterns observed after acetaminophen injection in normal and bile fistula rats. Based on the kinetic parameters obtained, the plasma concentrations of AS and AG after acetaminophen injection were simulated, and a fairly good agreement was obtained between calculated and observed values at the dose of 264.6 mumol/kg. Although the urinary metabolite excretion pattern differs from that of humans, the kinetic parameters obtained for rats were similar to those for humans in some respects, suggesting that the rat might be useful as a model animal to predict human data.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Gastroenterology. 1977 Oct;73(4 Pt 1):691-6 - PubMed
    1. J Pharm Sci. 1968 Jan;57(1):117-23 - PubMed
    1. J Pharmacol Exp Ther. 1981 Oct;219(1):14-20 - PubMed
    1. Experientia. 1976 Dec 15;32(12):1556-7 - PubMed
    1. Q J Med. 1976 Apr;45(178):181-91 - PubMed

LinkOut - more resources