Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Oct;94(4):1101-9.
doi: 10.1093/oxfordjournals.jbchem.a134453.

Fast release of calcium from sarcoplasmic reticulum vesicles monitored by chlortetracycline fluorescence

Free article

Fast release of calcium from sarcoplasmic reticulum vesicles monitored by chlortetracycline fluorescence

K Nagasaki et al. J Biochem. 1983 Oct.
Free article

Abstract

Rapid Ca2+ release rate from sarcoplasmic reticulum vesicles was determined by the stopped flow method in terms of chlortetracycline fluorescence. Intensity of chlortetracycline fluorescence was proportional to the intravesicular free Ca2+ concentration. Ca2+ efflux was activated by extravesicular Ca2+ with an apparent dissociation constant of 25 microM and was inhibited with an inhibition constant of 120 microM in the absence of Mg2+. Caffeine enhanced the Ca2+ release rate by increasing only the affinity of Ca2+ for the activation site. Mg2+ reduced the Ca2+ release rate by competitive binding to the activation site. ATP increased the Ca2+ release rate very much without changing the affinities of Ca2+ for the activation and inhibition sites, i.e., ATP seems to increase the pore radius or number of the Ca2+ channels without affecting the gating mechanism of the channel. These results are consistent with those reported in skinned muscle sarcoplasmic reticulum. The maximum rate of Ca2+ release in the presence of ATP reached 80 s-1. This value is considered to be sufficient to cause muscular contraction.

PubMed Disclaimer

Publication types