Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1983 Dec;19(4):319-27.
doi: 10.1016/0162-0134(83)80005-1.

Chelation therapy for methylmercury(II) poisoning. Synthesis and determination of solubility properties of MeHg(II) complexes of thiol and dithiol antidotes

Comparative Study

Chelation therapy for methylmercury(II) poisoning. Synthesis and determination of solubility properties of MeHg(II) complexes of thiol and dithiol antidotes

A P Arnold et al. J Inorg Biochem. 1983 Dec.

Abstract

Methylmercury(II) complexes of the most widely studied antidotes for mercury poisoning have been prepared, and both the water solubility and 1-octanol/water partition coefficients determined for these complexes and the L-cysteine complex. New complexes of N-acetyl-D,L-penicillamine, 2-mercaptosuccinic acid, meso-dimercaptosuccinic acid, and Unithiol have been synthesized and characterized, and are found to have the formulations MeHgSCMe2CH(NHCOMe)CO2H, MeHgSCH(CO2H)CH2CO2H, MeHgSCH(CO2H)CH(CO2H)SHgMe, and Na[MeHgSCH2CH-(SHgMe)CH2SO3], respectively. Trends in octanol/water partition coefficients are consistent with reported studies of the effectiveness of antidotes for MeHg(II) poisoning and redistribution of MeHg(II) on administration of antidotes, particularly for British anti-Lewisite, Unithiol, and meso-dimercaptosuccinic acid.

PubMed Disclaimer

Publication types

LinkOut - more resources