Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1983 Dec;58(4):495-512.
doi: 10.1086/413544.

Energy metabolism, brain size and longevity in mammals

Comparative Study

Energy metabolism, brain size and longevity in mammals

M A Hofman. Q Rev Biol. 1983 Dec.

Abstract

The mathematical relations between basal energy metabolism, brain size, and life span in mammals have been investigated. The evolutionary level of brain development, or encephalization (c), is a function both of brain weight (E) and of body weight (P) according to (formula; see text) Brain weight was found to be a linear function of the product of encephalization and basal metabolic rate. The oxygen consumption of the brain (Mbrain) is proportional to both encephalization and body weight according to (formula; see text) The ratio of metabolic rate in the cerebral cortex to that in the brain as a whole depends solely upon the degree of encephalization and is independent of the size of the animal. The maximum potential life span of a mammal was found to be proportional to the product of its degree of encephalization and the reciprocal of its metabolic rate per unit weight. Life span may be regarded as the algebraic sum of two components: (1) a deduced somatic component (Lb) inversely related to the basal metabolic rate per unit weight, and (2) an encephalization component (Le) related directly to the evolutionary increase of relative brain size.

PubMed Disclaimer

Publication types