Bend propagation in flagella. I. Derivation of equations of motion and their simulation
- PMID: 667306
- PMCID: PMC1473560
- DOI: 10.1016/S0006-3495(78)85431-9
Bend propagation in flagella. I. Derivation of equations of motion and their simulation
Abstract
A set of nonlinear differential equations describing flagellar motion in an external viscous medium is derived. Because of the local nature of these equations and the use of a Crank-Nicolson-type forward time step, which is stable for large deltat, numerical solution of these equations on a digital computer is relatively fast. Stable bend initiation and propagation, without internal viscous resistance, is demonstrated for a flagellum containing a linear elastic bending resistance and an elastic shear resistance that depends on sliding. The elastic shear resistance is derived from a plausible structural model of the radial link system. The active shear force for the dynein system is specified by a history-dependent functional of curvature characterized by the parameters m0, a proportionality constant between the maximum active shear moment and curvature, and tau, a relaxation time which essentially determines the delay between curvature and active moment.
Similar articles
-
Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.Biophys J. 1985 Oct;48(4):633-42. doi: 10.1016/S0006-3495(85)83819-4. Biophys J. 1985. PMID: 3840393 Free PMC article.
-
Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model.Biophys J. 1972 May;12(5):564-86. doi: 10.1016/S0006-3495(72)86104-6. Biophys J. 1972. PMID: 5030565 Free PMC article.
-
Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion.Biophys J. 1979 Mar;25(3):421-41. doi: 10.1016/S0006-3495(79)85313-8. Biophys J. 1979. PMID: 162447 Free PMC article.
-
Models for oscillation and bend propagation by flagella.Symp Soc Exp Biol. 1982;35:313-38. Symp Soc Exp Biol. 1982. PMID: 6223398 Review.
-
Thinking about flagellar oscillation.Cell Motil Cytoskeleton. 2009 Aug;66(8):425-36. doi: 10.1002/cm.20313. Cell Motil Cytoskeleton. 2009. PMID: 18828155 Review.
Cited by
-
Analysis of three-dimensional ciliary beating by means of high-speed stereomicroscopy.Biophys J. 1994 Jul;67(1):381-94. doi: 10.1016/S0006-3495(94)80493-X. Biophys J. 1994. PMID: 7919011 Free PMC article.
-
Effect of fluid elasticity on the emergence of oscillations in an active elastic filament.J R Soc Interface. 2024 May;21(214):20240046. doi: 10.1098/rsif.2024.0046. Epub 2024 May 22. J R Soc Interface. 2024. PMID: 38774961 Free PMC article.
-
The reaction-diffusion basis of animated patterns in eukaryotic flagella.Nat Commun. 2023 Sep 27;14(1):5638. doi: 10.1038/s41467-023-40338-2. Nat Commun. 2023. PMID: 37758714 Free PMC article.
-
Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling.Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6001-6. doi: 10.1073/pnas.94.12.6001. Proc Natl Acad Sci U S A. 1997. PMID: 9177158 Free PMC article.
-
Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?J R Soc Interface. 2010 Dec 6;7(53):1689-97. doi: 10.1098/rsif.2010.0136. Epub 2010 May 12. J R Soc Interface. 2010. PMID: 20462879 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources