Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jan 25;755(2):257-62.
doi: 10.1016/0304-4165(83)90212-x.

Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances

Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances

J Mizushima-Sugano et al. Biochim Biophys Acta. .

Abstract

Microtubules in solutions, observed under a dark-field microscope, show incessant Brownian movement such as translational, rotational and flexing motion. A large number of microtubules, spontaneously stuck to the under surface of a coverslip, were photographed and the contour lengths and end-to-end distances of their images were measured. From the statistical analysis of the contour lengths and end-to-end distances, a value for the parameter lambda representing the flexibility of singlet microtubules was estimated to be lambda = (6.8 +/- 0.8) . 10(-3) micrometers-1. From the value of lambda, the elastic modulus for bending, epsilon, and Young's modulus, Y, of singlet microtubules were computed to be epsilon = approximately 10(-16) and Y = approximately 10(9) dyne . cm-2, respectively. The microscopic elastic constant, k, of bonding between two tubulin monomers neighboring along the singlet microtubule was computed to be k = congruent to 10(2) dyne . cm-1. A singlet microtubule is an order of magnitude as strong against bending and as weak against stretching as an F-actin filament.

PubMed Disclaimer

Publication types

LinkOut - more resources