Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1984 Jan;157(1):13-20.
doi: 10.1128/jb.157.1.13-20.1984.

Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp

Comparative Study

Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp

T P Hatch et al. J Bacteriol. 1984 Jan.

Abstract

Significant differences in cysteine-containing proteins and detergent-related solubility properties were observed between outer membrane protein complexes of reproductive (reticulate body) and infective (elementary body) forms of Chlamydia psittaci (6BC). Elementary bodies harvested at 48 h postinfection possessed a 40-kilodalton major outer membrane protein and three extraordinarily cysteine-rich outer membrane proteins of 62, 59, and 12 kilodaltons, all of which were not solubilized by sodium dodecyl sulfate in the absence of thiol reagents. Intracellularly dividing reticulate bodies harvested at 21 h postinfection were severely deficient in the cysteine-rich proteins but possessed almost as much major outer membrane protein as did the elementary bodies. Most of the major outer membrane protein of reticulate bodies was solubilized by sodium dodecyl sulfate and was present in envelopes as monomers, although a proportion formed disulfide-cross-linked oligomers. By 21 to 24 h postinfection, reticulate bodies commenced synthesis of the cysteine-rich proteins which were found in outer membranes as disulfide-cross-linked complexes. The outer membranes of reticulate bodies of Chlamydia trachomatis (LGV434) also were found to be deficient in cysteine-rich proteins and to be more susceptible to dissociation in sodium dodecyl sulfate than were outer membranes of elementary bodies.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bacteriol. 1967 Oct;94(4):1178-83 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biochemistry. 1971 Jun 22;10(13):2606-17 - PubMed
    1. J Gen Microbiol. 1974 Jan;80(1):315-8 - PubMed
    1. J Bacteriol. 1973 Sep;115(3):717-22 - PubMed

Publication types

MeSH terms

LinkOut - more resources