Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Feb;44(2):703-9.

Chromosome breakage induced by thymidylate stress in thymidylate synthase-negative mutants of mouse FM3A cells

  • PMID: 6692373

Chromosome breakage induced by thymidylate stress in thymidylate synthase-negative mutants of mouse FM3A cells

T Hori et al. Cancer Res. 1984 Feb.

Abstract

In thymidylate synthase-negative mutants of mouse FM3A cells, thymidine starvation rapidly decreased mitotic activity and resulted in cell death (thymineless death). When the thymidine starvation was reversed by an addition of thymidine, mitotic activity was recovered, but the majority of mitotic cells exhibited extensive chromosome aberrations, including chromatid breaks, chromatid exchanges, and pulverizations. Autoradiographic examination revealed that chromosome instability was induced only in cells arrested in the S phase during thymidine starvation. Furthermore, the most sensitive sites to the chromosome-damaging effect appeared to be sites which had replicated just prior to thymidine starvation. During thymidine starvation, cells at other stages in the cell cycle were accumulated at the G1-S boundary, and they were insensitive to the chromosome-damaging effect. Thymidine starvation was also found to be recombinagenic. Complete removal from the medium of a thymidine analogue, 5-bromo-2'-deoxyuridine, resulted in a dramatic increase in the frequency of sister chromatid exchanges. These results support the view that thymidine starvation in mammalian cells results in thymineless death via induction of DNA double-strand breaks, leading to chromosome fragmentation as well as rearrangements in the cells synthesizing DNA.

PubMed Disclaimer

Publication types