Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan 25;259(2):820-31.

Glucocorticoid-receptor complexes in rat thymus cells. Rapid kinetic behavior and a cyclic model

  • PMID: 6693398
Free article

Glucocorticoid-receptor complexes in rat thymus cells. Rapid kinetic behavior and a cyclic model

A Munck et al. J Biol Chem. .
Free article

Abstract

We have studied the kinetics, on time scales of minutes and seconds, of formation and interconversion of glucocorticoid-receptor complexes in rat thymus cells under physiological conditions. Nonactivated and activated complexes were measured by a minicolumn technique that permits rapid, multiple simultaneous assays. The rate-limiting step in formation of nuclear complexes was activation, which at 37 degrees C had a half-time of 30-60 s. Activation in cells at 25 degrees C followed first order kinetics. Nuclear binding at 37 degrees C was too fast to measure, and probably has a half-time below 10 s. Earlier findings suggesting that triamcinolone acetonide and dexamethasone give higher steady state ratios of activated to nonactivated complexes than cortisol and corticosterone have been supported by showing that these ratios are concentration-independent, and are unlikely to be due to degradation or dissociation of complexes after cell disruption. A simple cyclic model of receptor kinetics, in which each glucocorticoid is characterized by its dissociation rate constant, accounts quantitatively for these results and many others. The model is based on the assumptions that activation is irreversible, and that energy is required for regenerating functional receptors after each cycle. It yields steady state ratios of activated to nonactivated complexes in agreement with experiment without introducing steroid-specific allosteric influences on activation, and suggests a new mechanism for explaining agonist-antagonist relationships.

PubMed Disclaimer

Publication types

LinkOut - more resources