Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Mar;151(1):70-9.
doi: 10.1016/0014-4827(84)90356-2.

Osmoregulation of amino acid transport activity in cultured fibroblasts

Osmoregulation of amino acid transport activity in cultured fibroblasts

M Tramacere et al. Exp Cell Res. 1984 Mar.

Abstract

The effect of exposure of chick embryo cells to increasing concentrations of Na+ in the culture medium on the subsequent amino acid transport as determined at physiological osmolarity was investigated in detail. It was found that the hyperosmolar treatment stimulated amino acid transport in a dose-dependent manner up to 200 mM Na+. Changes were measurable as early as 1 h after altering Na+ and reached a maximum after 4 h, remaining constant thereafter. The maintenance of this effect required continuous exposure of the cell to high Na+ in the culture medium. Hyperosmolarity-mediated increases in amino acid transport activity by system A have been detected with L-proline and L-alanine. Transport activities of systems ASC and L did not change appreciably after exposure of the cells to high Na+. Inhibition of protein synthesis by cycloheximide or RNA synthesis by actinomycin D (actD) prevented these uptake changes. Kinetic analysis indicated that the stimulation of the activity of transport system A by high Na+ treatment occurred through a mechanism affecting Vmax rather than Km.

PubMed Disclaimer

Publication types

LinkOut - more resources