Genetic mapping in the Mexican axolotl, Ambystoma mexicanum
- PMID: 6704787
- DOI: 10.1139/g84-001
Genetic mapping in the Mexican axolotl, Ambystoma mexicanum
Abstract
In the Mexican axolotl, Ambystoma mexicanum, gynogenetic diploids can be produced by suppressing the release of the second polar body in eggs activated with irradiated sperm. If the female is heterozygous for a particular mutation, some of the progeny will be homozygous for the mutation. The proportion depends on the distance from the centromere and can be used to determine the gene--centromere (or gene-kinetochore) distance. The mapping function is based on the Neurospora tetrad mapping function. Several variations on this function, based on considerations of how coincidence varies with map distance, are considered. Three genes have been mapped: c at 5.9, t at 24.3, and m at 59.1 map units from their respective centromeres. Four other genes (a, ax, p, and the sex locus) appear to be distant from their centromeres but precise map distances cannot be determined. Based on these data, the total length of the genome has been estimated as at least 2600 map units.