Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Apr;44(4):1536-40.

Site-specific induction of nuclear anomalies (apoptotic bodies and micronuclei) by carcinogens in mice

  • PMID: 6704967

Site-specific induction of nuclear anomalies (apoptotic bodies and micronuclei) by carcinogens in mice

A Ronen et al. Cancer Res. 1984 Apr.

Abstract

The usefulness of nuclear anomalies (NA) as a short-term test for indication of carcinogens in the mouse colon has been suggested previously by experiments in which colon-specific carcinogens induced NA in the colon, whereas non-colon carcinogens were, in general, impotent in that organ. We have extended this work to other sites in the digestive tract of female C57BL/6 mice treated with gamma-rays, 1,2-dimethylhydrazine dihydrochloride, or N-methylnitrosourea. Each agent induced NA at all of the sites examined. The frequency of NA at different times after treatment depended upon both the agent used and the site examined. 1,2-Dimethylhydrazine dihydrochloride (which is known to induce tumors predominantly in the colon) induces NA with the highest efficiency (relative to gamma-rays) in the descending colon. N-Methylnitrosourea (which induces tumors mainly in the forestomach) induces NA with the highest efficiency in the forestomach. These results further support the usefulness of the assay in that the frequency of NA produced at the various sites by 1,2-dimethylhydrazine dihydrochloride and N-methylnitrosourea correlates with that found in the carcinogenicity studies.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms