Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Mar;56(3):681-90.
doi: 10.1152/jappl.1984.56.3.681.

Interrupter technique for measurement of respiratory mechanics in anesthetized cats

Interrupter technique for measurement of respiratory mechanics in anesthetized cats

S B Gottfried et al. J Appl Physiol Respir Environ Exerc Physiol. 1984 Mar.

Abstract

In six spontaneously breathing anesthetized cats (pentobarbital sodium, 35 mg/kg ip), airflow, changes in lung volume, and tracheal and esophageal pressures were measured. Airflow was interrupted by brief airway occlusions during relaxed expirations (elicited via the Breuer-Hering inflation reflex) and throughout spontaneous breaths. A plateau in tracheal pressure occurred throughout relaxed expirations and the latter part of spontaneous expirations indicating respiratory muscle relaxation. Measurement of tracheal pressure, immediately preceding airflow, and corresponding volume enabled determination of respiratory system elastance and flow resistance. These were partitioned into lung and chest wall components using esophageal pressure. Respiratory system elastance was constant over the tidal volume range, divided approximately equally between the lung and chest wall. While the passive pressure-flow relationship for the respiratory system was linear, those for the lung and chest wall were curvilinear. Volume dependence of chest wall flow resistance was demonstrated. During inspiratory interruptions, tracheal pressure increased progressively; initial tracheal pressure was estimated by backward extrapolation. Inspiratory flow resistance of the lung and total respiratory system were constant. Force-velocity properties of the contracting inspiratory muscles contributed little to overall active resistance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources