Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan;98(1):193-204.
doi: 10.1083/jcb.98.1.193.

Two forms of cerebellar glial cells interact differently with neurons in vitro

Two forms of cerebellar glial cells interact differently with neurons in vitro

M E Hatten et al. J Cell Biol. 1984 Jan.

Abstract

Specific interactions between neurons and glia dissociated from early postnatal mouse cerebellar tissue were studied in vitro by indirect immunocytochemical staining with antisera raised against purified glial filament protein, galactocerebroside, and the NILE glycoprotein. Two forms of cells were stained with antisera raised against purified glial filament protein. The first, characterized by a cell body 9 microns diam and processes 130-150 microns long, usually had two to three neurons associated with them and resembled Bergmann glia. The second had a slightly larger cell body with markedly shorter arms among which were nestled several dozen neuronal cells, and resembled astrocytes of the granular layer. Staining with monoclonal antisera raised against purified galactocerebroside revealed the presence of immature oligodendroglia in the cultures. These glial cells constituted approximately 2% of the total cell population in the cultures and, in contrast to astroglia, did not form specific contacts with neurons. Staining with two neuronal markers, antisera raised against purified NILE glycoprotein and tetanus toxin, revealed that most cells associated with presumed astroglia were small neurons (5-8 microns). After 1-2 d in culture, some stained neurons had very fine, short processes. Nearly all of the processes greater than 10-20 micron long were glial in origin. Electron microscopy also demonstrated the presence of two forms of astroglia in the cultures, each with a different organizing influence on cerebellar neurons. Most neurons associated with astroglia were granule neurons, although a few larger neurons sometimes associated with them. Time-lapse video microscopy revealed extensive cell migration (approximately 10 microns/h) along the arms of Bergmann-like astroglia. In contrast, cells did not migrate along the arms of astrocyte-like astroglia, but remained stationary at or near branch points. Growth cone activity, pulsating movements of cell perikarya, and ruffling of the membranes of glial and neuronal processes were also seen.

PubMed Disclaimer

References

    1. J Comp Neurol. 1970 Sep;140(1):1-33 - PubMed
    1. Z Zellforsch Mikrosk Anat. 1970;108(1):93-104 - PubMed
    1. J Comp Neurol. 1971 Mar;141(3):283-312 - PubMed
    1. Brain Res. 1971 May 7;28(2):351-4 - PubMed
    1. Brain Res. 1972 Aug 25;43(2):429-35 - PubMed

Publication types