Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Aug;61(2):322-7.
doi: 10.3171/jns.1984.61.2.0322.

Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure

Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure

E S Conner et al. J Neurosurg. 1984 Aug.

Abstract

This research was directed at the pathophysiology of normal-pressure hydrocephalus. The experimental method consisted of accurate and simultaneous measurement of the pressure within the ventricle and over the cerebral convexity in cats with hydrocephalus but normal ventricular pressure. Hydrocephalus was induced by the intracisternal injection of kaolin. Prior to the induction of hydrocephalus, the difference between the ventricular pressure and the pressure over the convexity (the transmantle pressure) was small (0.27 +/- 0.31 cm saline, mean +/- standard deviation). After the induction of normal-pressure hydrocephalus in seven animals, there was a statistically significant elevation of the transmantle pressure to 3.4 +/- 3.9 cm saline (p less than 0.05, Student's paired t-test). There was no similar increase in animals injected with lactated Ringer's solution. This finding supports the theory that it is the transmantle pressure, and not the ventricular pressure, that is the physiological determinant of ventricular dilatation. The theory explains why hydrocephalus can develop and persist despite normal ventricular pressure.

PubMed Disclaimer

Publication types

LinkOut - more resources