Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1982 Jul;53(1):169-74.
doi: 10.1152/jappl.1982.53.1.169.

Dose-dependent inhibition of cold air-induced bronchoconstriction by atropine

Clinical Trial

Dose-dependent inhibition of cold air-induced bronchoconstriction by atropine

D Sheppard et al. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul.

Abstract

We undertook a study to demonstrate whether inhalation of atropine could inhibit cold air-induced bronchoconstriction in a dose-dependent fashion. In seven subjects with asthma we assessed the effects of placebo and of various doses of inhaled atropine (0.13-2.08 mg) on a base-line specific airway resistance (sRaw) and on the increase in sRaw produced by 5 min of voluntary eucapnic hyperventilation with subfreezing air at -17 degrees C. We also assessed the effect of the lowest doses of atropine on the increase in sRaw produced by five breaths of 1.0% metacholine. Atropine in doses of 0.13 or 0.26 mg caused a maximal reduction in base-line sRaw and completely inhibited the effect of 1.0% methacholine on sRaw, but it did not inhibit the bronchomotor response to cold air. Higher doses of atropine did inhibit the effect of cold air on sRaw in a dose-dependent fashion. The dose of atropine required to inhibit this effect of cold air varied with the increase in sRaw produced by cold air after placebo. These results suggest that cold air causes bronchoconstriction through vagal pathways and that higher doses of antimuscarinic agents are required to inhibit vagally mediated bronchoconstriction than those required to reduce base-line airway tone or to inhibit the effects of a large dose of an inhaled muscarinic agonist.

PubMed Disclaimer

Publication types

LinkOut - more resources