Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun;89(6):687-99.
doi: 10.1016/s0161-6420(82)34750-8.

Penetrating keratoplasty in the cat. A clinically applicable model

Penetrating keratoplasty in the cat. A clinically applicable model

C F Bahn et al. Ophthalmology. 1982 Jun.

Abstract

A series of 28 consecutive penetrating keratoplasties were performed on adult cats. Donor corneas (n = 14) were maintained in culture medium for 14--24 hours prior to transplantation. Rotational autografts (n = 7) were used to control for cell loss caused by culture maintenance as well as for the effects of surgery. Additional homografts (n = 7) were transplanted following removal of the corneal endothelium to study the extent of host corneal endothelial cell regeneration. Pre- and post-operative endothelial cell counts of the homografts made from specular micrographs demonstrated an average cell loss of 30% one month following surgery. A similar 30% average cell loss was present in the rotational autografts. Clinically, both homografts and autografts remained clear and were near normal in thickness. Homografts lacking endothelium exhibited persistent, severe edema that correlated with the inability of the host corneal endothelium to resurface the graft. Clinical and morphologic evidence of mild homograft rejection as observed in 15% of the animals that received normal homografts. Corneal endothelial cell loss following penetrating keratoplasty in the cat approximates that observed following the same procedure in the human. Additionally, regenerative capacity of the corneal endothelium in the cat, like that of the human, is limited. These features suggest that this cooperative, hardy animal is an excellent model in which to study many aspects of corneal transplantation that have direct application to the treatment of human corneal disease.

PubMed Disclaimer

Publication types

LinkOut - more resources