Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Aug 12;689(3):429-36.
doi: 10.1016/0005-2736(82)90299-1.

The influence of uncouplers on facilitated diffusion of sorbose in Saccharomyces cerevisiae

The influence of uncouplers on facilitated diffusion of sorbose in Saccharomyces cerevisiae

P J Van den Broek et al. Biochim Biophys Acta. .

Abstract

Sorbose uptake in Saccharomyces cerevisiae, strain Delft 1, proceeds via mediated passive transport. In the cell sorbose is distributed in at least two compartments. Efflux studies showed that sorbose uptake in one of these compartments is not readily reversible. Uncouplers of oxidative phosphorylation inhibit both transport velocity and steady-state uptake level. It could be shown that these two effects are caused by different modes of action of the uncouplers. None of these two effects could be ascribed to changes of the electrochemical H+ gradient or of the intracellular pH. It is suggested that the inhibition of uptake velocity is caused by binding of the uncoupler to the sorbose translocator, thus lowering the transport activity. The uncoupler binding site is probably located at the intracellular fragment of the carrier. The second effect, reduction of the steady-state uptake level, is probably due to blocking of sorbose influx into the compartment that exhibits poor reversibility.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources