Power spectral analysis of the EEG following protein malnutrition
- PMID: 6767525
- DOI: 10.1016/0361-9230(80)90283-x
Power spectral analysis of the EEG following protein malnutrition
Abstract
In these studies, power spectral analysis techniques were utilized to quantify the EEG obtained from rats reared on either an 8% or 25% casein diet during various vigilance states at two stages of development: (1) adulthood-90 to 120 days old; and (2) immediately after weaning-22 to 23 days old. It was found that the cortical EEG contained relatively more power in the low frequencies (ie., 0.5 to 10 Hz) for the 22-23 day old animals than for the 90-120 day old rats, especially during the slow wave sleep states-SWS1 and SWS2. Theta activity (5-8 Hz) in the hippocampus was shown to have greater power for the 22-23 day old group than for the older animals during both REM sleep and waking. Analyses of power spectral data and other indices of the frequency distribution of the hippocampal EEG indicated that those animals subjected to protein malnutrition have significantly more power in the theta band during REM sleep than the normal adult group. Since it was also noted that the hippocampal EEG obtained from the 22-23 day old group contained relatively more power in the theta band than the 90-120 day old group, the dietary treatment effect might be intrepreted as an instance of retarded development associated with protein malnutrition. Thus, a significant effect of the dietary manipulation used in the study may be largely on the system responsible for regulating theta activity.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous
