Fish gill carbonic anhydrase: acid-base regulation or salt transport?
- PMID: 6768312
- DOI: 10.1152/ajpregu.1980.238.3.R240
Fish gill carbonic anhydrase: acid-base regulation or salt transport?
Abstract
During the passage of blood through the fish gill, large oscillations in oxygen and carbon dioxide content occur. Although the increase in oxygen content is related to oxygen binding by red blood cells, the fall in carbon dioxide content is independent of red blood cells and their complement of carbonic anhydrase. This loss of venous carbon dioxide content is primarily the result of the movement of plasma bicarbonate into the gill epithelium, where it subsequently can be converted to molecular carbon dioxide by branchial carbonic anhydrase. The ultimate control of the bicarbonate flux and hence plasma hydrogen ion regulation is coupled to salt movements also occurring in the fish gill. This evidence in conjunction with carbonic anhydrase localization studies makes it possible to formulate a model capable of explaining acid-base regulation as well as salt transport in freshwater- or seawater-adapted fish. In light of this model the role of the "chloride cell" is discussed.
Similar articles
-
New insights into the many functions of carbonic anhydrase in fish gills.Respir Physiol Neurobiol. 2012 Dec 1;184(3):223-30. doi: 10.1016/j.resp.2012.06.001. Epub 2012 Jun 15. Respir Physiol Neurobiol. 2012. PMID: 22706265 Review.
-
Roles of gill and red cell carbonic anhydrase in elasmobranch HCO3- and CO2 excretion.Am J Physiol. 1987 Sep;253(3 Pt 2):R450-8. doi: 10.1152/ajpregu.1987.253.3.R450. Am J Physiol. 1987. PMID: 3115121
-
An investigation of carbonic anhydrase activity in the gills and blood plasma of brown bullhead (Ameiurus nebulosus), longnose skate (Raja rhina), and spotted raffish (Hydrolagus colliei).J Comp Physiol B. 2002 Jan;172(1):77-86. doi: 10.1007/s003600100229. J Comp Physiol B. 2002. PMID: 11824406
-
Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon?Physiol Biochem Zool. 2006 Nov-Dec;79(6):981-96. doi: 10.1086/507658. Epub 2006 Oct 5. Physiol Biochem Zool. 2006. PMID: 17041864
-
Interactions between ion and gas transfer in freshwater teleost fish.Comp Biochem Physiol A Mol Integr Physiol. 1998 Jan;119(1):3-8. doi: 10.1016/s1095-6433(97)00412-1. Comp Biochem Physiol A Mol Integr Physiol. 1998. PMID: 11253798 Review.
Cited by
-
Acid-base regulation in the plainfin midshipman (Porichthys notatus): an aglomerular marine teleost.J Comp Physiol B. 2010 Nov;180(8):1213-25. doi: 10.1007/s00360-010-0492-8. Epub 2010 Jun 23. J Comp Physiol B. 2010. PMID: 20571812
-
Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel.BMC Genomics. 2015 Dec 18;16:1072. doi: 10.1186/s12864-015-2271-0. BMC Genomics. 2015. PMID: 26678671 Free PMC article.
-
Roles of cortisol and carbonic anhydrase in acid-base compensation in rainbow trout, Oncorhynchus mykiss.J Comp Physiol B. 2011 May;181(4):501-15. doi: 10.1007/s00360-010-0540-4. Epub 2010 Dec 7. J Comp Physiol B. 2011. PMID: 21136263
-
Identification and immunocytochemical localization of two different carbonic anhydrase isoenzymes in teleostean fish erythrocytes and gill epithelia.Histochemistry. 1988;89(5):451-9. doi: 10.1007/BF00492602. Histochemistry. 1988. PMID: 3139588
-
Morphology and changes of chloride cell of Rutilus rutilus Caspicus (Cyprinidea, teleost) in Caspian Sea.Vet Res Commun. 2009 Dec;33(8):979-86. doi: 10.1007/s11259-009-9316-2. Epub 2009 Sep 16. Vet Res Commun. 2009. PMID: 19757132
MeSH terms
Substances
LinkOut - more resources
Full Text Sources