Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Jul 25;255(14):6653-61.

Yeast mutant defective in phosphatidylserine synthesis

  • PMID: 6771275
Free article

Yeast mutant defective in phosphatidylserine synthesis

K Atkinson et al. J Biol Chem. .
Free article

Abstract

Phospholipid biosynthesis in a mutant of Saccharomyces cerevisiae (cho1) which lacks phosphatidylserine (Atkinson, K. D., Jensen, B., Storm, E., Kolat, A. I., Henry, S. A. & Fogel, S. (1980) J. Bacteriol. 141, 558-564) has been examined. The ability of cells of this strain to synthesize phosphatidylserine in vitro in a cell-free system is reduced at least 10-fold, whereas other phospholipid-synthesizing activities are present at normal or slightly elevated levels. While all phospholipid biosynthetic activities, except phosphatidylserine synthesis, can be demonstrated in vitro in the cho1 mutant, the entire pattern of phospholipid synthesis, accumulation, and turnover in vivo is distorted. Phosphatidylinositol synthesis is elevated, as is phosphatidylcholine synthesis. In addition, the turnover of phosphatidylcholine is more rapid in the cho1 mutant. The cho1 mutant appears to use almost exclusively the alternative pathway described by Kennedy and Weiss (1956) J. Biol. Chem. 222, 193-214) for the production of phosphatidylethanolamine and phosphatidylcholine, bypassing phosphatidylserine as an intermediate.

PubMed Disclaimer

Publication types

LinkOut - more resources