Rheogenic sodium transport in a tight epithelium, the amphibian skin
- PMID: 6774086
- PMCID: PMC1282847
- DOI: 10.1113/jphysiol.1980.sp013242
Rheogenic sodium transport in a tight epithelium, the amphibian skin
Abstract
1. Intracellular potentials from frog and toad skins were measured to identify rheogenic components of active Na transport across the basolateral membrane. Transcellular current flow and associated R . I-drops were blocked with amiloride or Na-free mucosal solution. 2. The potential difference across the basolateral membrane was found to be hyperpolarized by 18 . 5 +/- 1 . 6 mV above the steady-state value immediately after blockage of apical membrane Na conductance. The hyperpolarization disappeared within 15--25 min. 3. The final steady-state value of 93 . 1 +/- 2 . 5 mV was slightly less than reasonable estimates of the K equilibrium potential. 4. The hyperpolarization could not be observed 3--5 min after addition of ouabain (10(-4) M). 5. Both the magnitude and duration of the hyperpolarization correlate directly with the amount of Na accumulated in the intracellular space. 6. A fraction of the intracellular potential was missing when Na transport was re-established after long term blockage of apical membrane Na entry. It reappeared within 10--20 min. 7. It is suggested that the hyperpolarization is due to rheogenic Na transport across the basolateral membranes. This transport mechanism may contribute some 30--50% of the electrical gradient for passive Na entry across the mucosal membrane. 8. A coupling ratio between pumped fluxes of Na and K of about 2:1 is calculated from the data.
Similar articles
-
Transient potassium fluxes in toad skin.J Membr Biol. 1979 Sep;49(3):199-233. doi: 10.1007/BF01871119. J Membr Biol. 1979. PMID: 114665
-
Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.Acta Physiol Scand. 1984 Feb;120(2):287-96. doi: 10.1111/j.1748-1716.1984.tb00136.x. Acta Physiol Scand. 1984. PMID: 6324546
-
Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.Pflugers Arch. 2003 May;446(2):198-202. doi: 10.1007/s00424-003-1009-z. Epub 2003 Jan 28. Pflugers Arch. 2003. PMID: 12739157
-
Ion transport by mitochondria-rich cells in toad skin.J Membr Biol. 1987;99(1):25-40. doi: 10.1007/BF01870619. J Membr Biol. 1987. PMID: 3123695
-
Role of mitochondria-rich cells in epithelial chloride uptake.Exp Physiol. 1996 May;81(3):525-34. doi: 10.1113/expphysiol.1996.sp003955. Exp Physiol. 1996. PMID: 8737085 Review.
Cited by
-
Implications of an anomalous intracellular electrical response in bullfrog corneal epithelium.J Membr Biol. 1985;87(3):201-9. doi: 10.1007/BF01871219. J Membr Biol. 1985. PMID: 3878411
-
Dual effect of barium on basolateral membrane conductance of frog skin.Pflugers Arch. 1990 Oct;417(2):207-12. doi: 10.1007/BF00370701. Pflugers Arch. 1990. PMID: 2084616
-
Transepithelial Na+ transport and the intracellular fluids: a computer study.J Membr Biol. 1982;65(1-2):63-80. doi: 10.1007/BF01870470. J Membr Biol. 1982. PMID: 7057462
-
Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium.J Membr Biol. 1986;90(1):89-96. doi: 10.1007/BF01869688. J Membr Biol. 1986. PMID: 3486296
-
Electrophysiologic changes associated with potassium depletion of frog skin.J Membr Biol. 1980 Dec 30;57(3):235-41. doi: 10.1007/BF01869591. J Membr Biol. 1980. PMID: 6970820
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources