Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jan 25;256(2):785-92.

Chemical modification of critical catalytic residues of lysine, arginine, and tryptophan in human glucose phosphate isomerase

  • PMID: 6778875
Free article

Chemical modification of critical catalytic residues of lysine, arginine, and tryptophan in human glucose phosphate isomerase

H S Lu et al. J Biol Chem. .
Free article

Abstract

Human glucose phosphate isomerase was subjected to a series of chemical modifications aimed at identifying residues essential for catalytic activity. A specific lysine was found to stoichiometrically react with pyridoxal 5'-phosphate forming a reversible Schiff base which could be reduced with NaBH4. The covalently modified enzyme was specifically cleaved with hydroxylamine at three labile Asn-Gly sequences yielding a series of peptides which were separated by sodium dodecyl sulfate-polyacrylamide electrophoresis. The modified lysine was located in the COOH-terminal peptide. A critical arginine residue/subunit was found to be stoichiometrically modified with either 2,3-butadione or cyclohexadione. At high concentrations of butadione, an irreversible nonspecific modification of essentially all arginines occurred. An essential tryptophan residue was found to be stoichiometrically modified with N-bromosuccinimide in a similar fashion. Each of the chemical modifications of these three residues followed pseudo-first order and rate saturation kinetics and the modifications were prevented by the presence of substrates or competitive inhibitors. Circular dichroic spectral studies and analytical gel filtration indicated that these modifications have no effect on the quarternary structure and little effect on the secondary and tertiary structures of the enzyme. However, the extensive modification of arginine with butadione caused a dissociation of the enzyme into monomers and significant changes in tertiary structure. These studies provide new insights into functional aspects of isomerization and also provide an effective method for evaluating structural consequences of chemical or genetic modification of the enzyme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources