Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Dec;22(3):929-41.
doi: 10.1016/0092-8674(80)90570-x.

A new type of virus from cultured Drosophila cells: characterization and use in studies of the heat-shock response

A new type of virus from cultured Drosophila cells: characterization and use in studies of the heat-shock response

M P Scott et al. Cell. 1980 Dec.

Abstract

An infectious virus isolated from the cultured Drosophila melanogster cell line, Schneider 2-L, appears to be a member of a new group of animal viruses. The virus, HPS-1 has a genome composed of a single segment of double-stranded RNA approximately 6 kb in length. Virions are particles approximately 36 nm in diameter. They contain only two proteins and no lipid coat. The major protein, presumably the viral coat protein, is 120,000 daltons. A 200,000 dalton protein is present in much lower quantities. Two other proteins, synthesized in virus-producing cells, are encoded in the viral genome but not included in the mature virion. Synthesis of viral proteins is not affected by the heat-shock-induced translational control that inhibits translation of most normal mRNAs but allows protein synthesis on heat-shock mRNAs. The viral mRNAs thus appear to share the structural features of heat-shock mRNAs which permit heir translation in heat-shocked cells. Viral RNA serves as a probe to study heat-shock translational control. Cells heat-shocked in the presence of actinomycin D cannot transcribe heat-shock mRNA and therefore cannot make heat-shock proteins. Although these cells are making neither heat-shock mRNA nor heat-shock protein, the translational control appears fully induced. The normal cell proteins are not made in these cells but viral proteins are synthesized. These results indicate that the heat shock-induced proteins are not components of the translational control mechanism.

PubMed Disclaimer

Publication types

LinkOut - more resources