Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Feb 25;256(4):1861-6.

The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis

  • PMID: 6780554
Free article

The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis

P W Mason et al. J Biol Chem. .
Free article

Abstract

This paper is concerned with the control of glycolysis in nongrowing Streptococcus lactis 7962. Changes were measured in the concentrations of glycolytic intermediates, intracellular inorganic phosphate (Pi), and adenine nucleotides following addition of glucose to cells that were in a starved condition. We find that intracellular Pi is a major factor in the control of glycolysis. In starved cells, the intracellular Pi concentration is high, greater than 40 mM. The large phosphoenolpyruvate pool that exists in starved cells can be explained as a result of inhibition of pyruvate kinase by the high concentration of Pi. On the other hand, in cells that are metabolizing glucose at a steady state rate, the cellular Pi concentration is low and pyruvate kinase is active. Upon depletion of glucose from the medium, the metabolite concentrations return to the values originally found in the starved state. This glucose depletion raises the intracellular Pi which again leads to inhibition of pyruvate kinase and the consequent buildup of the P-enolpyruvate pool.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources