Electric dichroism in the purple membrane of Halobacterium halobium
- PMID: 6784783
- PMCID: PMC1327426
- DOI: 10.1016/S0006-3495(81)84887-4
Electric dichroism in the purple membrane of Halobacterium halobium
Abstract
Aqueous suspensions of fragments of the purple membrane of Halobacterium halobium are exposed to short electric field pulses. The relaxation kinetics of the induced dichroism are studied as a function of environmental factors such as temperature, medium viscosity, and treatment of the membranes with glutaraldehyde and dimethylsulfoxide. The data indicate that the alignment of the retinyl chromophore is due to orientation of the whole membrane fragments with their planes parallel to the electric field, as well as to an intramembrane orientation of bacteriorhodopsin molecules (or of a part of such molecules). Wavelength effects on the dichroic ratio show that weak, out of (membrane) plane components contribute to the chromophore spectrum on the red side (lambda greater than 560 nm) of the main (alpha) absorption band as well as the range of the beta band (lambda less than 480 nm). The former effect is attributed to exciton interactions, while the latter is assigned to the contribution of a transition to the lowest 1Ag+ state ("cis" band). It is also concluded that the transition moment along the short (kappa) axis, in the plane of the polyene molecule, has a substantial component perpendicular to the membrane plane.
Similar articles
-
Electric field effects in bacteriorhodopsin.Biophys J. 1977 Jul;19(1):1-5. doi: 10.1016/S0006-3495(77)85558-6. Biophys J. 1977. PMID: 880320 Free PMC article.
-
Picosecond kinetics of the fluorescence from the chromophore of the purple membrane protein of Halobacterium halobium.Biophys J. 1976 May;16(5):541-5. doi: 10.1016/S0006-3495(76)85709-8. Biophys J. 1976. PMID: 1276383 Free PMC article.
-
Long time stability of purple membranes from Halobacterium halobium.Acta Biochim Biophys Acad Sci Hung. 1984;19(3-4):215-9. Acta Biochim Biophys Acad Sci Hung. 1984. PMID: 6545629
-
The purple membrane from Halobacterium halobium.Annu Rev Biophys Bioeng. 1977;6:87-109. doi: 10.1146/annurev.bb.06.060177.000511. Annu Rev Biophys Bioeng. 1977. PMID: 326156 Review. No abstract available.
-
Different proposed applications of bacteriorhodopsin.Recent Pat DNA Gene Seq. 2011 Apr;5(1):35-40. doi: 10.2174/187221511794839273. Recent Pat DNA Gene Seq. 2011. PMID: 21306298 Review.
Cited by
-
Interfacial electric polarizability of purple membranes in solution.Biophys J. 1982 Oct;40(1):1-5. doi: 10.1016/S0006-3495(82)84451-2. Biophys J. 1982. PMID: 7139031 Free PMC article.
-
Electrostatics and electrodynamics of bacteriorhodopsin.Biophys J. 1996 Dec;71(6):3381-91. doi: 10.1016/S0006-3495(96)79531-0. Biophys J. 1996. PMID: 8968607 Free PMC article.
-
Electrodichroism of purple membrane: ionic strength dependence.Biophys J. 1986 May;49(5):1089-100. doi: 10.1016/S0006-3495(86)83737-7. Biophys J. 1986. PMID: 19431673 Free PMC article.
-
Orientation of the chromophore plane in purple membrane.Biophys J. 1988 Dec;54(6):1175-8. doi: 10.1016/S0006-3495(88)83053-4. Biophys J. 1988. PMID: 19431737 Free PMC article.
-
Anisotropic electric properties of purple membrane and their change during the photoreaction cycle.Biophys J. 1984 Mar;45(3):615-25. doi: 10.1016/S0006-3495(84)84200-9. Biophys J. 1984. PMID: 6713073 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources