Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Jun 10;256(11):5481-8.

Structure-function studies of cholera toxin and its A and B protomers. Modification of tryptophan residues

  • PMID: 6787042
Free article

Structure-function studies of cholera toxin and its A and B protomers. Modification of tryptophan residues

M J De Wolf et al. J Biol Chem. .
Free article

Abstract

The tryptophan residues on cholera toxin and its A and B protomers have been modified by reaction with 2-nitrophenylsulfenyl chloride and 2,4-dinitrophenylsulfenyl chloride. Modification of the tryptophan residues of cholera toxin results in complete loss of toxicity measured in a skin permeability assay. Modification of cholera toxin and its B protomer results in the complete loss of binding activity toward membrane receptors, the ganglioside galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylceramide (GM1), and the oligosaccharide moiety of the ganglioside GM1. Modification of cholera toxin and its A protomer results in a complete loss of the ADP-ribosylation activity exhibited by their native counterparts. Modification of the A protomer results in no apparent change in its physical properties by sedimentation velocity in the ultracentrifuge or by gel filtration chromatography. Modification of the B protomer, either directly or when it remains a component part of the holo toxin structure, results in a change in its sedimentation value and its elution from gel filtration columns. The changes are compatible with a conversion of the B protomer from a pentameric moiety in aqueous solvents to its existence as a monomer unit, i.e. to the individual polypeptide chains comprising the native B pentamer. Thiolysis of the 2,4-dinitrophenylsulfenyl chloride derivative of the B protomer reaggregates the individual-polypeptide chains but does not return its ability to interact with GM1.

PubMed Disclaimer

LinkOut - more resources