Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 May 12;20(10):2758-67.
doi: 10.1021/bi00513a009.

Phosphoenolpyruvate carboxykinase (guanosine 5'-triphosphate) from rat liver cytosol. Divalent cation involvement in the decarboxylation reactions

Phosphoenolpyruvate carboxykinase (guanosine 5'-triphosphate) from rat liver cytosol. Divalent cation involvement in the decarboxylation reactions

G Colombo et al. Biochemistry. .

Abstract

The presence of a divalent metal ion together with a catalytic amount of inosine 5'-diphosphate (IDP) is essential for the formation of pyruvate from oxalacetate catalyzed by purified rat liver cytosol phosphoenolpyruvate carboxykinase (PEPCK). With decreasing order of effectiveness, this pyruvate-forming activity was supported by micromolar levels of Cd2+, Zn2+, Mn2+, and Co2+. At the same concentrations, Mg2+ or Ca2+ was not effective. Combinations of Cd2+ with either Zn2+, Mn2+ or Co2+ were not additive with respect to the pyruvate-forming activity of PEPCK. Kinetic determination, with Cd2+ as the supporting cation, showed a 1:1 stoichiometry of interaction between each enzyme molecule and the nonconsumable substrate IDP. With 10 muM added Cd2+, the apparent Km for oxalacetate was 41 muM, and the apparent Ka for IDP was 0.25 muM. With Zn2+ or Mn2+, the apparent Ka for IDP was 0.2 or 0.13 muM, respectively. The effect of divalent transition-metal ions on PEPCK-catalyzed formation of phosphoenolpyruvate from oxalacetate was also investigated. Under steady-state conditions, the basal activity with MgITP was effectively enhanced with micromolar levels of Mn2+, Cd2+, or Co2+ included in the assay. The Vm increased 7- and 3.6-fold, and the apparent Km for MgITP changed by about a factor of 2 with the optimal concentrations of Mn2+ and Co2+, respectively. The most striking changes were in the apparent Km values for oxalacetate, which decreased to one-third and one-tenth when either Mn2+ or Co2+ was present in the assay together with Mg2+. The possible physiological importance of this kinetic effect is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources