Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1982 Feb;21(2):299-309.
doi: 10.1128/AAC.21.2.299.

Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant

Comparative Study

Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant

B L Angus et al. Antimicrob Agents Chemother. 1982 Feb.

Abstract

The Pseudomonas aeruginosa mutant Z61 has been shown to be highly supersusceptible to a wide range of antibiotics, including beta-lactams, aminoglycosides, rifampin, tetracycline, and chloramphenicol (W. Zimmerman, Int. J. Clin. Pharmacol. Biopharm. 17:131-134, 1979). Spontaneous revertants were isolated, using gentamicin or carbenicillin as selective agents, and shown to have two patterns of susceptibility to a group of 12 antibiotics. Partial revertants had 2- to 10-fold greater resistance to these antibiotics than mutant Z61, whereas full revertants had antibiotic susceptibilities indistinguishable from those of the wild-type strain K799, from which mutant Z61 had been derived. Uptake of a chromogenic beta-lactam nitrocefin was studied in both uninduced and induced cells of all strains by measuring the steady-state rate of nitrocefin hydrolysis by the inducible, periplasmic beta-lactamase in both whole and broken cells. This demonstrated that outer membrane permeability decreased as antibiotic resistance increased in the series mutant Z61, partial revertants, wild type, and full revertants. The data were consistent with the idea of low outer membrane permeability being caused by a low proportion of open functional porins in the outer membrane as the reason for the high natural antibiotic resistance of wild-type P, aeruginosa strains. In addition, it was observed that levels of benzylpenicillin below the minimal inhibitory concentration for mutant Z61 failed to induce beta-lactamase production. The possibility that this was related to the observed increase in outer membrane permeability is discussed. Preliminary evidence is presented that the pore-forming outer membrane porin protein F is not altered in mutant Z61.

PubMed Disclaimer

References

    1. Antimicrob Agents Chemother. 1974 Aug;6(2):200-6 - PubMed
    1. Anal Biochem. 1969 Jul;30(1):148-52 - PubMed
    1. J Bacteriol. 1971 Mar;105(3):968-75 - PubMed
    1. J Pharm Pharmacol. 1972 Mar;24(3):215-8 - PubMed
    1. J Biol Chem. 1972 Aug 25;247(16):5123-31 - PubMed

Publication types

MeSH terms