Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 May 21;688(1):145-51.
doi: 10.1016/0005-2736(82)90589-2.

Membrane lipids composition and metabolism during early embryonic development. Phospholipid subcellular distribution and 32P labeling

Membrane lipids composition and metabolism during early embryonic development. Phospholipid subcellular distribution and 32P labeling

T S Alonso et al. Biochim Biophys Acta. .

Abstract

Phospholipid composition and 32P metabolism were studied in oocytes and early developing embryos of the toad, Bufo arenarum, Hensel. The content and distribution of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, sphingomyelin, phosphatidylserine, and diphosphatidylglycerol in embryos, whole oocytes, and the subcellular fractions of both were determined. Phosphatidylcholine and phosphatidylethanolamine were the major constituents of yolk platelet. Diphosphatidylglycerol was confined to the mitochondrial fraction, where it represented about 7% of the total phosphoacylglycerols. Relatively large amounts of sphingomyelin were found in microsomal and postmicrosomal supernatants. After in vivo labeling with 32P, the early development of individual phospholipids in subcellular fractions and in whole eggs was followed. The greatest uptake was found in mitochondrial and yolk platelet fractions. A steady increase in the amount of 32P present in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol was seen in the whole embryo from oocyte to late gastrula stage and in all subcellular fractions. Phosphatidic acid exhibited a slight decrease in specific activity, except in the yolk platelet fraction. This high 32P incorporation would indicate a rapid and uneven polar headgroup turnover determined by phospholipid class and subcellular fraction. At the same time, the phospholipid content of the subcellular fractions studied remained unchanged during early embryogenesis. Moreover, 32P was actively incorporated into the individual phospholipids in the absence of measurable net synthesis.

PubMed Disclaimer

LinkOut - more resources