Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Dec;31(12):1109-14.
doi: 10.2337/diacare.31.12.1109.

A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: transferrin and iron availability

A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: transferrin and iron availability

W M Artis et al. Diabetes. 1982 Dec.

Abstract

The defect in host defense that makes the diabetic ketoacidotic (DKA) patient susceptible to mucormycosis has not been identified. Sera from 10 DKA patients and three normal volunteers were tested for their capacity to support the in vitro growth of a common etiologic agent of mucormycosis, Rhizopus oryzae. After equilibration with room air none of the normal or DKA sera, each of which was now extremely alkaline, supported growth of R. oryzae. When the sera were placed in a CO2 atmosphere that permitted simulation of the in vivo clinical pH (normal 7.40 and DKA 7.3-6.6), four of seven DKA sera supported profuse fungal growth. No growth occurred in normal serum. The three DKA sera that did not support fungal growth at pH less than or equal to 7.3 contained less iron (x = 13 micrograms/dl) than the four sera that supported profuse fungal growth (x = 69 micrograms/dl). Increasing the iron content of iron-poor DKA serum that did not support R. oryzae growth allowed profuse growth at acidotic conditions but not at pH greater than or equal to 7.4. Simulated acidotic conditions (pH 7.3-6.6) also decreased the iron-binding capacity of normal serum stepwise from 266 micrograms/dl to 0. Our data indicate that acidosis temporarily disrupts the capacity of transferrin to bind iron and suggest that this alteration abolishes an important host defense mechanism that permits growth of R. oryzae.

PubMed Disclaimer

Publication types

LinkOut - more resources