Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1982 Dec 31;699(3):217-25.
doi: 10.1016/0167-4781(82)90110-5.

Defective repair of mitomycin C crosslinks in Fanconi's anemia and loss in confluent normal human and xeroderma pigmentosum cells

Comparative Study

Defective repair of mitomycin C crosslinks in Fanconi's anemia and loss in confluent normal human and xeroderma pigmentosum cells

Y Fujiwara. Biochim Biophys Acta. .

Abstract

Crosslink repair of mitomycin C-induced interstrand crosslinks was studied in exponentially growing and confluent normal human, transformed W138CT-1, Fanconi's anemia (FA) and xeroderma pigmentosum (XP) group-A fibroblasts by the assay methods of alkaline sucrose centrifugation, hydroxyapatite column chromatography and S1-nuclease digestion. These three methods demonstrated unequivocally that crosslinking occurred at a rate of 0.13 crosslinks/10(8) Da per microgram per ml mitomycin C (less than or equal to 10 micrograms/ml) and the first half-excision of crosslinks followed the rapid first-order kinetics of 2-3 h half-life in exponentially-growing normal, WI38CT-1 and XP group-A cells. However, the first half-excision was completely defective in three out of the four FA strains tested and severely retarded in an FA strain. These results strongly support our previous observations in different strains of normal human, FA and XP group-A cells. An important new addition is that confluent, otherwise proficient, normal and XP cells almost completely lost the ability of the first, rapid half-excision of mitomycin C crosslinks in their DNA. This probably suggests that the enzyme or regulatory factor responsible for the half-excision, which differs from that for nucleotide excision repair, present constitutively in confluent cells, may be induced or activated only in the cycling cells. However, its relation to a defective FA factor is not clear at present.

PubMed Disclaimer

Publication types

LinkOut - more resources