Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Mar;32(3):773-81.
doi: 10.1016/0092-8674(83)90063-6.

Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri

Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri

J Engebrecht et al. Cell. 1983 Mar.

Abstract

Recombinant E. coli that produce light were found in a clone library of hybrid plasmids containing DNA from the marine bacterium Vibrio fischeri. All luminescent clones had a 16 kb insert that encoded enzymatic activities for the light reaction as well as regulatory functions necessary for expression of the luminescence phenotype (Lux). Mutants generated by transposons Tn5 and mini-Mu were used to define Lux functions and to determine the genetic organization of the lux region. Regulatory and enzymatic functions were assigned to regions of two lux operons. With transcriptional fusions between the lacZ gene or transposon mini-Mu and the target gene, expression of lux operons could be measured in the absence of light production. The direction of transcription of lux operons was deduced from the orientation of mini-Mu insertions in the fusion plasmids. Induction of transcription of one lux operon required a function encoded by that operon (autoregulation). From these and other regulatory relationships, we propose a model for genetic control of light production.

PubMed Disclaimer

Publication types

LinkOut - more resources