Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978;26(4):220-8.
doi: 10.1159/000122829.

Late endocrine effects of administering monosodium glutamate to neonatal rats

Comparative Study

Late endocrine effects of administering monosodium glutamate to neonatal rats

J L Bakke et al. Neuroendocrinology. 1978.

Abstract

Rats were injected with monosodium 1-glutamate (MSG) daily for the 1st 5 days of life and allowed to mature. This is known to cause selective destruction of neurons in the retina and in the arcuate nucleus of the hypothalamus. The adult animals had a significant increase in body fat without an increase in weight, a marked reduction in pituitary, thyroid, adrenal, gonadal and prostate weights. Pituitary, hypothalamic and serum thyrotropin (TSH) were significantly reduced in the males. Serum growth hormone (GH) was markedly reduced in both sexes and the serum prolactin (Prl) was increased significantly in females. FSH did not appear to be abnormal and the LH may have been increased in the males. Serum T4 was significantly reduced in females. The fertility of the females was normal, but treated males mated with normal females showed a marked reduction in fertility and, although the litter sizes of the offspring were normal, the birth weights of the pups of both sexes were significantly reduced. These persistent alterations in neuroendocrine function indicate that lesions produced by neonatal MSG treatment provide a convenient model for studying hypothalamic function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources