Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Mar;221(2):404-16.
doi: 10.1016/0003-9861(83)90159-5.

Isolation of a fraction with Ca2+ ionophore properties from rat liver mitochondria

Isolation of a fraction with Ca2+ ionophore properties from rat liver mitochondria

P M Sokolove et al. Arch Biochem Biophys. 1983 Mar.

Abstract

Isolation of a small protein with properties of a Ca2+ ionophore from calf heart mitochondria has recently been reported [A. Y. Jeng and A. E. Shamoo, 1980, J. Biol. Chem. 255, 6897, 6904]. We have isolated a fraction with similar physical and chemical properties from rat liver mitochondria. In particular, the hepatic preparation is able to bind Ca2+ with high affinity in such a fashion that the resultant complex is soluble in a hydrophobic phase. It will also transport Ca2+ through a stirred organic phase (Pressman cell). Interaction of the liver preparation with Ca2+ is sensitive to inhibitors of mitochondrial Ca2+ uptake. The hepatic preparation contains both protein and lipid components. The phospholipid components were identified and the behavior of a similar mixture of commercially available phospholipids was compared to that of the ionophore fraction from rat liver mitochondria. All of the Ca2+ binding properties of the rat liver preparation could be mimicked by the lipids. In a preliminary experiment, reduction of the phospholipid content of the preparation to less than one lipid phosphate per protein molecule (assuming a molecular weight of 3000 by analogy with the calf heart case) resulted in a protein that was unable to bind Ca2+. We, therefore, suggest that the ability of the preparation to interact with Ca2+ is due to the constituent phospholipids. Measurements of phospholipid-Ca2+ interactions in the model systems and under the conditions of low (microM) Ca2+ and phospholipid concentration utilized here demonstrated an affinity for Ca2+ (Ks approximately 1 microM) and a cation selectivity that have not previously been reported.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources